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1. INTRODUCTION

A numerical solution to the problem of electromagnetic coupling

to a perfectly conducting body of revolution with an interior region

filled with a loss-free homogeneous material is developed here. Similar,

but nevertheless different, problems have have already been solved. For

example, numerical solutions for homogeneous material bodies of revolu-

tion appear in [11 and [21. The problem of the lossy dielectric body of

revolution is addressed in [3]. Multilayered bodies are considered in

[4] and [5]. The problem of electromagnetic penetration through a sleeve-

fit seam in an otherwise perfectly conducting surface of revolution is

treated in [6]. Although the seam in [61 may exhibit a dielectric con-

trast, the bulk of the material inside the surface is the sane as the

material outside. The concept of equivalent currents [7, Sec. 3-51 is

used in [1-5. An equivalent aperture excitation technique [81 and an

aperture loading technique are used in [6]. Inspiration for the aperture

loading technique was drawn from [9].

Coupling to a perfectly conducting body of revolution with a homo-

geneous interior region is considered in [10], but no numerical solution

is pursued there. In the present report, the boundary formulation con-

sisting of [10, Eqs. (15)-(18)1 is solved numerically by means of the

method of moments 11l1. This formulation is only one of several boundary

formulations suggested in [10, Section 21. More boundary formulations

are outlined in [10, Sections, 3, 4, and 51. Those in [1.0, Sections 4

and 5] take advantage of the technique of subtracting out the short-

circuit fields. This technique captures the essence of the equivalent

aperture excitation technique. The present report is exclusively de-

voted to the numerical solution of the particular boundary formulation

consisting of 110, Lqs.(l)()1

1-1. FOk.MU1.ATTON OF TllE PROBLEM

,rie problem is that of electromagnetic coupling to the perfectly

conducting body of revolution with homogeneous interior region shown in

Fig. 1. Figure 1 shows a cross section of the configuration in a plane

containing the axis (z axis) of the conducting body of revolution. This
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conducting body is crosshatched. Homogeneous material with permeability

11 and permittivity E fills the exterior region V + bounded by the surface

S +and the aperture A. What is called S +is not a single surface, but two

surfaces, one below A and one above A. The interior region V bounded by

the surface S and the aperture A is filled with homogeneous material

characterized by 0- and C. All three surfaces S +, S-, and A are surfaces

of revolution. The electromagnetic excitation consists of impressed electric

and magnetic current sources J3i and M i+in V +and sources J i-and M N in V.

The resulting electric and magnetic fields in V are called E and H . The
-4

fields in V are called E and H .The fields E_ and H_ are unknown.

Obviously, solution for them constitutes a complete solution to the problem

presented in Fig. 1. However, our solution will be for equivalent surface
+ -4 4-

currents on S_ and A rather than for the fields E_ and H . It is possible

to construct E_ and H from these equivalent surface currents, but this is

not done in the present report.

The equivalence principle [7, Sec. 3-51 is used to obtain the situ-

ations shown in Figs. 2 and 3. In Fig. 2, (J3i , M i+) and equivalent cur-

rents J3+, J, and M radiate in the presence of the homogeneous medium

(Ii+ C + ) to produce CEH+) in Vand zero field elsewhere. Here, J+is

am electric current on S4- J is an electric current on A, and M is a mag-

netic current on A. In Fig. 3, (J1j, M 1 -) and equivalent currents -J -J,

and -M radiate in the presence of the homogeneous medium (p. c) to pro-

duce (E, H) in V and zero field elsewhere. Here, -J is an electric cur-

rent on S ,-J is an electric current on A, and -M is a magnetic current

on A. Since the surfaces S +and S_ are perfectly conducting in the original

problem of Fig. 1, only equivalent electric currents are needed on them in

Figs. 2 and 3. The choice of -J rather than J on S in Fig. 3 is due to

personal preference. However, the minus sign relationship between the

aperture currents in Figs. 2 and 3 is mandated by the zero field stipula-

tions in Figs. 2 and 3 and continuity of the tangential components of the

electric and magnetic fields across the aperture in Fig. 1. if the zero

field stipulations in Figs. 2 and 3 are enforced, then the minus sign

relationship between the aperture currents in Figs. 2 and 3 ensures con-

tinuity of tangential fields acrosb the aperture in Fig. 1. However,

if these zero field stipulations are not enforced, then the minus sign
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relationship between the aperture currents does not ensure continuity

of the tangential fields across the aperture in Fig. 1.

The equivalence principle states that the equivalent currents in

Figs. 2 and 3 are unique, but does not tell how to determine them. The

expressions in [7, Sec. 3-51 for the equivalent currents in terms of the

tangential components of the fields can not be used because the fields

are not known either. We determine the equivalent currents by enforcing

the boundary conditions for the fields in Fig. 1. These boundary con-

ditions are:

1) The tangential components of the electric field vanish

on the conducting surface S.

2) The tangential components of the electric field vanish on

the conducting surface S

3) The tangential components of the electric field are con-

tinuous across the aperture A.

4) The tangential components of the magnetic field are con-

tinuous across the aperture A.

The equations for these four boundary conditions are

E =0 on S (1a)
n+ -tan

-E =0on S (lb)+ -tann

+ E =-E on A (1c)
+ -tan ri+ -tan

H =H on A (ld)
-tan --tan

The subscript "tan" denotes tangential components on the surface in ques-

tion. The factor

+ (2)

was included in (1) to make (la), (lb), and (1c) compatible with (1d).
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In view of Figs. 2 and 3, (1) can be rewritten as

I Ea+ (J+ +J, M) = 1 onS+ (3a)- E (J -J,-tan on(a

1+ -tan - -1 + EKa

1 E a(- +J, M) =  Ei -  onS (3b)
+-tan -- +--tann T1

1 + + 1 El- on A (3c)
+ -tan (J  +J, M) - 7 Etan (J -+ J ' M) = +tan + - an oA-

--tn++-ta

- H (+ +JM)-H C +J, M) = H i+- H i-on A (3d)
tan- - -tan- M) M) -tan -tan

+

where E (J, M) denotes the tangential components of the electric field
-tan-

due to the electric current J and the magnetic current M, both radiating
+ +- +

in the medium characterized by (p-, e-). Similarly, K (J, M) denotes
-tan +

the tangential components of the corresponding magnetic field. Kt-nand
i± i+- an±+

are the tangential electric and magnetic fields 
due to (3 -,

tan + + +
radiating in the medium characterized by (p-, C-). Since J and J are

disjoint, the + sign between them in the expression (3_ +3) means union

rather than simple addition. Similarly, (J +J) denotes the union of J

with J. It does not matter whether the tangential electric fields on the

left-hand sides of (3a) and (3b) are evaluated just inside S± or just
+ +

outside S- because they are continuous across S-. The Ampere's law con-

tributions cancel out of the left-hand sides of (3c) and (3d). By Ampere's

law contribution we mean the contribution to the field due to the value of

the current at the field point. The qualification "on A" in (3c) and (3d)

means not only evaluation on A but also suppression of all Ampere's law

contributions. The set of equations (3) is essentially the same as [10,

Eqs. (15)-(18)]. It is shown in [101 that these equations suffice to
+

uniquely determine the equivalent currents J, 3, and M.

The four field operators which give the electric and magnetic fields

due to electric and magnetic currents appear in (3). However, it is evident

from [7, Eq. 3-79)] that

E± (O, M)- n H (- M, 0) (4)
-taa - tan n+

+
H (0, M) ±0 (5)
--tan ( ± 2 -tan n+M
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where

r' : (6)

The seemingly superfluous pair of factors n+ and 1/n+ on the right-hand

sides of (4) and (5) were included in order to liken the first arguments

of E and H to electric currents. In view of linearity of the field--tan -tan

operators, substitution of (4) and (5) into (3) gives

I E+a(J++j,0) + H+ (-- M, 0) - E+ on S+  
(7a)

-+ -tan - tan +- + -tan

- E ( +J,O) + H (I M,0) E - 
-E on S (7b)

--+ --tan tan +- + --tan

+ + 1+ 1I
E -+ (J + ' ,0) - - Fa(J-+JO) + H (- M,0) + H (-M,0)

-i ++tnn-tan- -tan T1+ - -tan rl+Tl rl Ti Ti

1 il+ i Ei-
- E - -- tF an on A (7c)

)+ -tan + -tan

H + ( + +JO) - H (J+J,0) -I- E ( M,O) E M,0)-tan_ tan - -tan +- 2 -tan + M
n () T)

=H i +  _ Hi -

-tan -tan on A (7d)

Unlike the left-hand sides of (3) which contain all four field operators,

the left-hand sides of (7) contain only the operators which give the electric

and magnetic fields due to electric currents. Equations (7) are solved by

means of the method of moments in section I1.

III. METHOD OF MOMENTS SOLUTION

The method of moments solution to (7) is obtained by first express-

ing the unknown currents (J+ +J), (J-+.), and M as linear combinations of

known expansion functions, then taking the symmetric product of (7) with

each member of a set of testing functions, and finally solving the resultinz

set of simultaneous equations.
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Momentarily ignoring the fact that (J++J) and (J-+J) are supposed

to be equal on A, we write

+_ 2 t + N+_ 1I -  + N-I + o (S++A) (8)
j n n n-n3j

n 1

J-+J= [ n_ + N J-2 J on (S-+A) (9)
n LJ=I j=I

where (S ++A) is the surface which is the union of S+ and A. Similarly,

(S-+A) is the union of S- and A. Since S , S-, and A are surfaces of

revolution, (S ++A) and (S-+A) are also surfaces of revolution. In (8)
t +  q5 t!

and (9), 1 . and I . are unknown coefficients. The vectors J I andq5 + nj n-nj

J + in (8) and (9) are expansion functions defined by
nj

+ = 1,2,... N-2

i u T ejn (10a)

O On = i, -+2,.

+ P(t jn j = 1,2 ... (N+-l or N-2)

n-j + e~n (10b)
_JJ j n = 0 , +l , 2 . . ..

The right-hand sides of (10) were obtained by attaching the superscript ±

to various quantities in the version of [12, Eqs. (2) and (3)] with P

replaced by N. The notation 4 in (10) denotes quantities defined on

(S-+A). The subscript j which runs from 1 to either N--2, N+ -1, or

N -2 in (10) is not to be confused with the j which appears in the argu-

ment of the exponential in (10). The latter j is v/Tl.

The quantities decorated with the notation ± on the right-hand

side of (10) depend on the generating curve of the surface (St+A). The

generating curve of a surface of revolution is the plane curve, which when

rotated about the z axis, generates the surface of revolution. For com-

putations, the generating curve of (S±+A) is approximated by choosing a

succession of points t7, j=l,2 .. N-, on the generating curve of (S+A)

and then connc:cting them with straight line segments. The point tj is

called a data point. Its location is specified by its distance p- from

the z axis and its z coordinate z-. Hence, we write]1
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Location of t. = (p., z.), j = 1,2 ... ( N

The generating curve of (St+A) starts at tl, goes to t2, then to t3$
--

and so forth until the last data point t-+ is reached. A typical arrange-
N- +

ment of data points on the generating curve of (S +A) is shown in Fig. 4.

Figure 5 shows an arrangement of data points on the generating curve of

(S +A). The first and last data points on the generating curve of (S ++A)

are on the z axis. The last two data points on the generating curve of

(S +A) overlap with the first two. All data points on A are common to

the generating curves of both (S ++A) and (S-+A). There are M data points

on A. The first data point on A is the point where A meets the lower

part of S This data point is the (M-+l)th data point on the generating

curve of (S-+A). The last data point on A is the point where A meets the

upper part of S

In (10), $ is the angular distance from the positive x axis.

$ is measured in the xy plane and toward the positive y axis. In (10b),

u is the unit vector in the t direction. No ± needs to be attached to
-P +
$ and u because they do not depend on the generating curve of (S-+A).

Henceforth, the expression "generating curve of (S-+A)" will

mean the series of straight line segments connecting the data points

t., j=I,2,...N . In (10), t is the arc length along the generating
J + +

curve of (S-+A) and u is the unit vector in the t direction. We
+ --+

choose t to be zero at the data point tl where the generating curve of

(S-+A) starts. Previously, only the location of t. was specified. The+ j --+

value of t. is now defined to be the value of t- at the location of t.
j+ + + -+ J

In (lOa), T- (t) is the triangle function which starts at t =+t,
+ +.+ - 4

reaches the maximum height of unity at t = t and ends at t = t+2.
+ t+

ILI (10b), PI(t-) is the unit pulse function which starts at = t
S+ ...+ + +

and ends at t = t + I . Naturally, the functions T and P are real. They

are essentially the same as the functions T and P shown in [12, Figs. 1

and 21. The t used in [12] corresponds to t- of the present report. The

notation of the present report was obtained by replacing the superscript -

on t in (12] by a horizontal bar directly above t and then appending
e sp .

the superscript f. In (10a), P is the distance from the z axis at t.
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the surface (S- + A).
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+ + +
In (lOb), p. is the value of p- at the center of the pulse function P.

Because of the nature of the approximate generating curve of (S +A),

S P i + ) (12)%j ( ° -l

-4 _+

where, as previously defined, p- is the distance of the data point t-
4 + +-

from the z axis. With the advent of t- and p, p- becomes the value
4 4 - +

of p at t = t.

As is evident from the range of values of j in (lOa), a peak of

a triangle function is placed at each data point on the generating curve
+-4 -4

of (S +A) except the first data point tI and the last data point tN.
-+ -4

As shown in Fig. 4, the data points t1 and t + lie on the z axis. No
f l _+ N

peak of a triangle function is needed at tI because the function
+.+.+ ..- +- -_ + -+ ..

+ (lt + +in (10a), being equal to l/P2 for t + t + t2  is just as
1 + t+ 2 i j as
large at tI as it is at t2 . Similarly, no peak of a triangle function

-+- + 2 +

is needed at t + because the function T (t+ )/P+ in (lOa) holds its
-+ N + -+ N-2 + -+

value 1/N at t = t + all the way out to t = t .
W4- -I N4-

It was necessary to overlap the last two data points with the

first two in Fig. 5 in order to induce a computational procedure which

places no peak of a triangle function at the first and last data points

to obtain a peak of a triangle function at every data point on the

generating curve of (S +A). The above mentioned computational procedure

was originally designed for a generating curve such as that of (S ++A)

whose first and last data points are on the z axis where no peaks of

triangle functions are wanted. The second summation with respect to j

in (9) is terminated at j = N -2 rather than at j = N -1 because,- due to

the overlapping data points in Fig. 5, the vector function J - de-
-n,N--l

fined by setting j = N -l in (lOb) is a duplicate of J-nl'

Because each triangle function in (10a) is continuous in t ,

the t components of (8) and (9) are also continuous in t . As a result,

(8) and (9) do not give rise to any circular loops of filamentary electric

charge. Any circular loop of such charge is not physically realizable

because an infinite amount of energy is required to assemble it. Since

each pulse function in (lOb) begins and ends abruptly, discontinuities

- mm mm •mm. a ma~mm mm m mm-
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in the 4 components of (8) and (9) are allowed at all the data points.
+

Unlike discontinuities in the t component of electric current, dis-

continuities in the $ component of electric current are not accompanied

by concentrations of electric change.

Since the data points of the generating curves of (S ++A) and (S-+A)

coincide with each other on A, the vector functions J and Jn on A in
-nj -llj

(8) are the same as those on A in (9). Hence, (8) and (9) can be made

equal on A by equating the coefficients of these vector functions. We

write

- M + N+-2 1it+t+ N+- I

= j I -Jt + I J  + M+ nnt +=X+ nn]

[ n j -11 j= +M nj-nj J=M +M

M t+M-1
+ Y X Injinj+m+ + X I nj+ (13)

L I j =1

J-+jI t-+ I$-J- + XI_~ t

J+J =j + NN - nj-nj
n =i j=l jM+M j=M +M ]

FM M-1I 1 njtn- l + I j$-u (14)
j -i n--n,j+M l +1 In,j+M nJ+(

n j=l

with
jt+ t

J n M = on A (15a)

--n,J+M+- -n,J+M-l' j = 2,3,...M-1 (15b)

Jn,+ t- on A (15c)

-n,M+M--I

-n,j+M+ -n,J+M j = 1,2 .... M-1 (15d)

The coefficients that were equated in (8) and (9) have been relabeled

In. and I in (13) and (14). The first j in (13) is a vector func-
nj nJ+M n

tion confined to S . The vector functions J and J in (13)
21xhw --nM++-I (13)

straddle S+and A. Except for the overflow of t+. and J t+~.lot
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S the second I in (13) is a vector function confined to A. The first
n nnt- jt-n

in (14) is confined to S-. The vector functions - and J 1 in (14)
-xM -nM+M-

straddle S and A. Except for the overflow of J - and J S-

z'-n - -,M+M-1l onto S

the second Y in (14) is confined to A. The right-hand sides of (13) and
n

(14) are equal on A because (15) implies that the portion on A of the

second Y in (13) is equal to the portion on A of the second X in-(14).

n n

To condense the notation in (13) and (14), we define expansion

functions J . and J by
-xi -nj

i t+ j =1,2,...M M--1j =

± + + +

Sj = M-, M-+I .... 2WM-iS-n,j-M-+l"
=l_ .7 (16)

-n 1 t± + ± 4 +i i J_ ±+M , j = 2M+, 2M + 1.... N-+ M-2

~n,j-NM+ =N+--l.

+~ 2N -2M-3J -- N- M-M-1.. L r 2rl3--2M-3

,jt+M _j = 192 .... M
-x,j+M1-l =

J _ = (17)

-nj

,j+M--M , J = M-1, M+2 .... 2M-1

I
and coefficients I .± by

nj

xj ,j = 1,2,..M--I

I t+ 9 j

1+ J-M±+-I ' J = M, M+1, ... 2M -1

Inj I 2 +2 4 + + (18)

jM!M ,j = 2M-, 2M +i... N+M-M-2

n-+ - - 2N+ 2M- 2

:_N+,,l j = N +M--M-I .... r2-23

nj -N±+2!1+l' 0 or 2N_-2-3

The new vector functions (16) and (17) and the new coefficients (18) re-

duce (13) and (14) to
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N+ jMl 1 +-n l (19)

j 1 n -- i j 1 i n -n 3j

J-+J = 1 n1-J7 +  I In12 (20)
n L jlj=4 i

Ll jX nj-nj '-l nj-njil

n .+ 2+ 2+
The first in (19) is on S . The functions -nl and J in (19)

j 2+ an 2+
straddle S+ and A. Except for the overflow of J 2n and J 2M onto
+ -ni -n ,2M-1
S , the second in (19) is confined to A. The first j in (20) is

j j

on S_. The functions J and J2- in (20) straddle S and A. Except
-nl --n,2M-Iforth ovrfow f 2- an 2-

for the overflow of and J 2- onto S, the second Y in (20) is con-
-ni -n,2M-1

fined to A. The right-hand sides of (19) and (20) are equal to each other

on A.

The equivalent magnetic current M in (7) Is expanded as

M + 2M-3 
13+

q I I nj-nj (21)
n j=l

where V is an unknown coefficient and J 3+. is an expansion function
nj -nj

given by

S +  j = 1,2,...M-2

J ji+M. (22)

n,j+M-M+2 j = M-1, M,...2M-3

+

The t component of (21) is continuous so that no circular loops of fila-

mentary magnetic charge appear in the aperture in Figs. 2 and 3. The ¢

component of (21) can have a discontinuity at each data point in the aper-

ture.

Now that the expansions (19)-(21) have been written for the equi-

valent currents, the next step in the method of moments is to take the

symmetric product of (7) with each member of a set of testing functions.

The symmetric product of two vectors W and E is called <W,E> and is
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S+ -
defined to be the integral of the dot product of W with E over S , S

and A. First, (7a) is tested with the vector function W. defined by

1+ 1+* +
--- i

WI ni j0+n* i =1,2 ... 2N+-2M-2 (23)

where the asterisk denotes complex conjugate. Then, (7b) is tested

with

- = ( ) , i = 1,2 .... 2N -2M-3 (24)

For the sake of argument, we write

1 + + + 1 I i+ +
S+ E+ +JO) + H tan + M,O) = - --tan on (S +A) (25)

1 -tn - -tn -ta

- 0 -- H-(-- - -an E on (S-+A) (26)
+ -tan -t!an -+ M' =-+ -tann r)r

Testing functions W2+ and are defined by
-ni -ni

= (J )* i = 1,2 .... 2M-1 (27)ni -

2- = 0 2- 1 = 1,2 .... 2M-1 (28)
-ni -i

2+
For a particular value of i, (25) is tested with W n (26) is tested

with W2-  and the results are added to obtain one equation. Letting i-- i'

run from 1 to 2M-1, we obtain 2M-1 equations. This kind of testing is

equivalent to

1) Testing (7a) with the part of Wno-nl on S ,

testing (7b) with the part of W 2- on S

testing (7c) with the part of W2+ on A,
-nl

and adding the results to obtain one equation.

2) Testing (7c) with W 2+  for i - 23, ...M-1-ni ' "



16

3) Testing (7a) with the part of W
2+ on S+

,

nM

testing (7b) with the part of W 2- on S
TIM

testing (7c) with the part of W 2+ on A,

and adding the results to obtain one more equation.

2+
4) Testing (7c) with W 2+ for i = M+l, M+2,. ..2M-l.

Statement 1) is justified in the following manner. Testing (25) with

the part of W on S is equivalent to testing (7a) with the part of
-n1

2+ + +
--n1 on S because (7.a) and (25) are identical on S . Likewise, testing

(26) with the part of W on S is equivalent to testing (7b) with the
2- 

1

part of on S . It is evident from (27), (28), (17), and (15) that

2+ 2-
14. = W on A, i = 1,2 ... 2M-1 (29a)

Hence, testing (25) with the part of W2+2--nl on A, testing (26) with the
profW

2 -  n

part of -n, on A, and adding the results is equivalent to testing

the sum of (25) and (26) with the part of W2+ on A. Because the sum

of (25) and (26) on A is precisely (7c), this amounts to testing (7c)
withthepartof 2+

with the part of on A. Consequently, statement 1) is true.

Since all the testing functions in statements 2) and 4) are

confined to A, (29a) implies that

W2+ = W2- (29b)
-nii --ni

for all the values of i in statements 2) and 4). Hence, for these

values of i, testing (25) with W2+ testing (26) with W2 and adding

the results amounts to testing (7c) with W2+ because the su of (25)

and (26) on A is (7c). Thus, statements 2) and 4) are true. Justifi-

cation for statement 3) is similar to that for statement 1) and is

left as an exercise for the interested reader.

Finally, (7d) is tested with

W3+ 3+*3 JU i = 1,2,...2M-3 (30)
i 2n(
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Substituting the expansions (19)-(21) into (7) and then test-

ing (7) with (23), (24), (27), (28), and (30) in the previously

described manner, we obtain the matrix equations

T X = B , n = 0, ±1, ±2, ... (31)nn n

Here, X is a column A-ctor of the unknown coefficients in (19)-(21).n

Also, T is a square -atrix called the moment matrix. Finally, B isn n

a column vector calloc the excitation vector. The elements of B are
n

obtained by testing ;,e nawn fields Ei± and on the right-hand
-tan -tan

sides of (7).

The column vetor X is defined byn

n n n n n]  (32

where the tilde (-) denotes the transpose of a column vector and where
f+ 1- - 1+ l-

the Jth elements of il+ , I I and V are, respectively, I Ij
n n Pn' n nj n

I n, and Vnj.

The moment matrix T is given byn

Z1I+ 0 2  13+
n n n

0 nrZl- I Z12- _yr13-
rn r n n

T n i  (33)
n 21+ 21- Z22+ + Z22- y23+ y23-n nrZn +l -y -y
n rn n rn n n

y31+ y31- y32+ + y32- Z33++ 1i)Z33-
n n n n n I, n

where

T) -l (34)
r +

The iJth elements of the superscripted Z and Y submatrices in (33)
n n

are given by
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Zpq - ,±- E±(Jqt , 0) p = 1,2,3 (35)
nij p' -nj

.pq= _WH 4(J , 0)> q = 1,2,3 (36)
nij -<ni -nI

The new vector functions J3- and W3- unavoidably introduced in

(35) and (36) are defined by

3- 3+
-nj -nj

(37)
W_3- W3+
-ni -ni

E± +

No superscript "tan" is needed on the field operators E and H in (35)
and (36) because the testing function 14 P is tangential to the surface

+ p+ q+ is

(S +A). Because W i and J n have the dimension of (1/distance) and-n3
1 E+ H

±

because the operators --r E and H are dimensionless, expressions (35)

and (36) are dimensionless. Hence,the elements of the moment matrix T
n

are also dimensionless.

The excitation vector B in (31) is given byn

B = [V il+ il- V I ] (38)
n n n n n

where the ith elements of 0 -, - V , and I are given by
n n n9 n

11+ 1+ 1 i+
V i <W.,- +E > (39a)
ni ni +

n

Vi = <W2+  i-- E+> - <W2- i-- Ei-> (39c)

ni ni n + ni ' +
n

Iii = <W3+ , Hi+> <3+ H i-> (39d)
n ni <n'

The superscript i in (38) and (39) is not to be confused with the sub-

script i in (39). The former i indicates dependence on the fields E
it
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and Hi . The latter i denotes the ith element of the column vector

in question. No superscript "tan" is needed on E and H i  in (39)

because all the testing functions in (39) are tangential vectors.

In general, the method of moments gives one matrix equation in

which all the unknowns are coupled to each other. However, in the

matrix equations (31) there is no coupling between X and X for m # n.n m

This lack of coupling is a consequence of the nature of the field

operators in (7), the e jnq dependence of the expansion functions, the

e- jn, dependence of the testing functions, and the fact that the

integral from 0 to 27 of the product of e -jm  with e jn  is zero whenever

m 0 n. The two field operators which give the tangential electric

and tangential magnetic fields due to an electric current appear in (7).

An e in  electric current produces an e jn  electric field [13, Appendix B]

and an e jn magnetic field [13, Eq. (9)]. In the previous sentence, the
j n j n,,*modifier e means that the dependence is described by e . Actually,

[13, Eq. (9)] represents the operator -n x H rather than -H where H de-

notes the magnetic field due to an electric current and n is the unit

normal vector which points outward from the surface of the body of revo-

lution in [13, Fig. 1]. However, the effect of n in n x H is to discard

the normal component of H and to rotate the tangential component of H

through an angle of 900 so that if n x H is ejn, then the tangential

component of H is also ejn'.

Equation (7d) can be called a magnetic field equation because it

comes from the boundary condition that the tangential components of the

magnetic field are continuous across the aperture. Since (7d) is a

magnetic field equation, we were tempted to multiply it by n x in order

to make it conform to [13, Eq. (3)] and [14, Eq. (1)]. The nxis vital

to [14, Eq. (1)]. If the nx were removed from [14, Eq. (1)], its method

of moments solution using the testing and expansion functions defined in

[14] would fail for any conducting body of revolution with a symmetric

generating curve. The conducting sphere in [14, Fig. 11 is an example

of a conducting body of revolution with a symmetric generating curve.

The above mentioned failure of the method of moments may be due to the
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fact that the magnetic field of an electric current is "cross polarized"

with respect to the electric current. For example, the magnetic field

of an electric current element is always perpendicular to that current

element 17, Eq. (2-113)].

Although the n , is vital to [14, Eq. (1)], we decided not to

mult iply (7d) by n / because of the fol lowing two reasons.

1) The magnetic field in (7d) as it stands is not all cross

polarized. Only the manetic field due to the electric

currents .1 +J is cross polarized. The magnetic field due to

the magnetic current M is not cross polarized.

2) If (7d) were multiplied by n /, we would have to calculate

matrix elements not only for the operators 17 (J,O) and

II (.,0) but also for n / 1: (I,0) and n / H (,0), . If the

functions which multiply ut, ;and u. in (10) were the same,

then the matrices for n ./ E' (.1,0) and n / H (J,0) could be

obtained by merely rearranging the elements of the matrices

for H, (1,0) and It (J,O). Unfortunately, the function in

(lOb) is different from that in (10a) so that multiplication of

(7d) by n / would indeed require calculation of additional

m:.trix (lements.

Accord in to (32), [fhe solution of (31) for X determines the

(uelficientsln." I - and Vn. in (19)-(21). Thanks to (16), (17),
ni nj nj

and (22), expressions (19)-(21) for the electric and magnetic currents

b(.(. m

-. I I2+ _I +N++M+_ M 2  l+it

+.- . + I 1 I i+t+
.+ ' III + .1 n , / - i + 2+ np "n,j-M++M

+-,21- (4 0)
2N -2II-2 I+ 5+ ++ 2 J,+
+ + Injn'l-N+2M+I +  .1 .1.lt  + Y .
j=N +n.--I " ]= nl-n, +M+-l jl+ nl-'nj+M+
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[ M -I l 2M-- N +M -M-

+J I= 1 + I j
- n - nj--n,j--

n=- j J-ni-Mj =2M n 1

(4] )

2N--2M-3 M 2M-1 _

S+I i' + nj L tI -
j=N +M -M-1 jj+ j

M= l r2V jt+ 2M-3 V j (42)

Y = j Y nj-n,j+M+ + - V n+m(-M+2]
n= ... =I j=M-1

IV. ELIMINATION OF T FOR NEGATIVE VALUES OF n

At first glance, solution of (31) requires calculation of the

moment matrices T for both negative and non-negative values of n.n

However, we will show that each element of T is either even or odd
n

in n. Consequently, by decomposing the excitation vector B into itsn

even and odd parts with respect to n, we will be able to express the

solutions to all of equations (31) in terms of the solutions to matrix

equations involving only the moment matrices T for the non-negativen

values of n.

The equations and unknowns in (31) were ordered so that the moment

matrix could, as in (33), be expressed in terms of a minimum number of

submatrices. Unfortunately, the arrangement of equations and unknowns

in (31) is not suitable for comparing the elements of T with those-n

of T . Hence, we rearrange the equations and unknowns in (31) to obtainn

t tP 3tt 3t -3t V
n n n n n n
# ~ Z y3 t y3qb : 3 1 -i3

n n n n n - n (43)

ytt t 3tt 3  +.3t
n n n n n n

_n n n n _ _n _ n

rs
In (43), Zn , r being either t or p and s being either t or q, is the

submatrix of all the elements of
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z I1+ 0 Z 1 2 +  -

n n

0 j Z11-  r Z12-  (44)
r n r n

Z21+ n Z21- Z22+ + Z22-
n rn n rn

for which the testing function is r type and the expansion function is

s type. Expression (44) was drawn from the right-hand side of (33). The

testing functions W . and expansion functions J q enter (44) by means
-ni -nj

of (35). The s type expansion functions, s being either t or 4, are
those on the right-hand sides of (16), (17) and (22) with the superscript s.

The r type testing functions, r being either t or $, are the complex con-
, rS

jugates of the r type expansion functions. Still in (43), n , r being

either t or $ and s being either t or 4, is the submatrix of all the ele-
ments

[Y31+ y31- y32+ + y32-
n n n n

for which the testing function is r type and the expansion function is

s type. The submatrices Z3r s and Y 3rS in (43) are similarly defined in
n n

terms of the remaining submatrices

[ 33+ + (I- ) Z33-
[Z n+( )n

r

and
-yl13 +

n

_yl3-
n

_y23+ _ y23-
Ln n

on the right-hand side of (33).

+"3 sThe column vector I n in (43), s being either t or 4, consists ofn

all the elements of

tin+ il-] (45)n n
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for which the superscript on the right-hand side of (18) is s and all

the coefficients I which multiply the s type expansion functions

in (19). Expression (45) was drawn from (32). Similarly, V in (43)n

is the coItzmn vector of all the coefficients of the s type expansion

functions in (21).

The column vector Vi3r on the right-hand side of (43), r beingn

either t or ', consists of all the elements of

[1+ -- (46)
n n n

for which the testing function is r type. Expression (46) was drawn

from (38). Finally, the column vector I in (43) consists of all the
n

elements of I for which the testing function is r type. The super-
n

scripts t and in (43) denote the types of testing and expansion func-

tions. However, the superscript 3 in (43) has no special meaning. It

serves only to distinguish matrices with it from those without it.

What happens to the submatrices Zr s and Z3 rs on the lel-handn n
side of (43) when n is replaced by -n? Previously, the eleme: . of Zrs

and Z3r
s were traced back to those of the elements (35) for which then

n
testing functions are r type and the expansion functions are s type.

Thanks to (16), (17), (22), (23), (24), (27), (28), (30), and (37), the

matrix element (35) can be written as

i - + s(J3, I 1,2,3
Z p q 4 = - Wr ± ,, I- m (Jsi' 0)>, 12, (47)

nij ni n 1,2,3

where J, are the expansion functions appearing in (13) and (14) and

r= (J ) (48)

The subscripts and superscripts on the left-hand side of (47) indicate

the testing function Wpi and the expansion function Jq+.It is under-

stood from (35) that Zpq+ indicates Wp+ and Jq+ and that Zpq - indicates
nij --ni --nj nij

wp- and In (47), r = t if Wpt is a t type expansion function,
-ni -nj -ni
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and r = i if W ft is a type expansion function. Similarly, s in
-i q+

(47) is determined by the type of the expansion function J 7.
-n]

According to (16), (17), and (22), the subscript J' in (47) is
q4

also determined by J n. Similarly, the subscript i' in (47) is-in
pt

determined by W .. Explicit expressions for i' and j' are not

needed now. If the testing functions and expansion functions in

[12, Eqs. (2)-(5)] are decorated by appending 4 to their super-

scripts and by changing their subscripts i and j to i' and j' and

if the normalized electric field operator -ES /n used in [121 is
4 ±

replaced by -E /n , then the elements of the moment matrix used in

[121 will be coerced into becoming the right-hand side of (47).

The moment matrix used in [12] is given by [12, Eqs. (9)-(12)]

from which it is evident that the tt and 0 submatrices are even in n

and that the t and tc submatrices are odd in n. Hence, the super-

scripted Z submatrices on the left-hand side of (43) satisfy
n

n- n

sieof(3 we ni epae jy-?Pevosy (49eemns a) r

• ry rs

ett o and q 3tt 3t

--np n (49b)

Y Zq 3,- t r , 4) H 1, 0),t (50)1

n L-n an 1,n, h

What happens tothe submatrices Y sadY3rs o h ethn

side of (43) when n is replaced by -n? Previously, the elements of Yr

and Y 3swere traced hack to those of the elements (36) for which then
n

testing functions are r type and the expansion functions are s type.
q, ~ r4  s

Replacement of WP and J .in (36) by W , and J gives
-ml -in] -xi

~pqj = r- s oy, jp= 1,2,3
Ynij W =iHGnof0> 1,2,3 (50)
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The change in testing functions and expansion functions in going

from (36) to (50) is the same as the change that sent (35) into

(47).

If the testing functions and expansion functions in [14]

are decorated by appending the superscript I and by changing their

subscripts i and j to i' and j' and if the magnetic field operator

H1s used in [14] is replaced by H , then the elements of the moment
.rs

matrix in [141 denoted by Y n'j become

= - <W. , n H (J.'' 0)> (51)

where

4

n =u I (52)

According to (52), n is a unit vector normal to the generating curve

of (S-+A). Althoug h we have been omitting the vector designation from

vectors inside the symmetric product, we decided to designate n' and

H1 as vectors in (51) to clearly indicate that the vector product
f 4

n \ H is intended there. Striving toward (50), we rewrite (51) as

rnis j # r_ , sJ ,, 0)' s 53

.rs4  <n \ wri 0 s +

Modified testing functions 4r, are now defined by inter-

changing the t and , components of iW,.ni

'= Lt (W' L ) (54a)

tni U ( n (5!4b)

Replacement of 14 , by W., in (53) gives

nie m L- m mr n iII I
m
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n'j' = <n 1[ ( . .0)>. (55)-ijj n - ni Is I t, I 1 )

The symbol ^ on the left-hand side of (55) indicates that the testingrt r +

function is Wi, instead of Wi,. In view of (52) and (54), (55)

becomes

- <W ,i 0)> = - Y, (56a)
ni _nj ni]j

s =t,

- <Wi. H 0Ws = O), (56b)
n ' __1- ni'i

The left-hand sides of (56) are the r t and r = portions of (50).

Hence, (56) states that the r = t matrix element in (50) is the negative

of the r = (b matrix element modified from [14] and that the r = matrix

element in (50) is the r = t matrix element modified from [14]. The

expression "matrix element modified from [14)" denotes the matrix element

of [14] modified by replacing the testing function W r by _r- of (54),

replacing the expansion function Js. by iS,, and replacing the magnetic
--ni

field operator HS by H. Note that, since all Ampere's law contributions

were suppressed in (3c) and (3d), the operator H does not contain any

Ampere's law contribution.

It is evident from [14, Eq. (12)] that the tt and # matrix

elements on the right-hand sides of (56) are even in n and that the pt

and t matrix elements on the right-hand sides of (56) are odd in n.

Consequently, the tt and f" matrix elements in (50) are odd in n and the

$t and t matrix elements in (50) are even in n. Hence, the submatrices

Yrs and Y3rS on the left-hand side of (43) satisfy
n n

Y n Y-n [Y n Yn
Iy t  y (57a)

-- YO Y # --O

_n-n_ L n ni

F3tt ~ 3tI ~ 3tt ~ 3t

'K-n n [ m(57b)

LY, 3t L3 (t -
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Next, the excitation vector on the right-hand side of (43) is

written as

F3t -i3to -i3tp
n n

n n + , n = 0, +1, +2 ... (58)

n n n

I yIc4
n n n

where

i~t@-13t + i3t
V V + V
n n -n
i3 @ 3 _O3

n n -n (59a)
-i3tB 2 i3t - i3t
n n -n

n n -n

iOto, -13t -1 3t

n n -n
-i3 -i3 + -13i
n 1 n -n (59b)

t 2 i3t + 4i3 t
n n -n

n n -n

The last superscript e or P on the column vectors on the right-hand side

of (58) distinguishes those column vectors from each other and from the

excitation vector on the left-hand side of (58). For a particular value of

n, the solution to (43) is the sum of the solutions obtained by replacing

the excitation vector by (59a) and (59b) successively. Hence, we write

At -3t6 I II I I
n n n

n n n (60)
-3t -3to 43t
V V V
n n n

n n n
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where the column vectors on right-hand side of (60) satisfy

n n n n n n

z~t 7, y3(t y3(" -3 u -i3¢u
n n n n n n, u = O, (61)

ytt yt( 3tt z3t b )3tu -i3tu
Y7.z V I

n n n 11 n n

Y Y z
n n n n n n

It is evident from (59) that

[Vi t V i3 i3t 0 i3O = [vi3tO _ i3 _i3tO ii e]
-n -n -n -n n n n n

(62a)

Iv 13 t¢ v iF3¢ i3t [i30% = [_i3tO i30 i3t _i3# I
-n -n -n -n n n n n (62b)

If n is replaced by -n in (61), and if (49), (57), and (62) are substituted

for the -n submatrices and excitation vectors, then comparison of the re-

sulting matrix equation with (61) yields

[it V [3tO _3O _vt 30 1 (63a)
-n -n -n -n n n n n

[13t~ i v-t V3_ ] [_ 3t 0" 3tt -V3 ¢ ] (63b)
-n -n -n -n n n n n

The solution to (43) is now given by (60) where the column vectors for non-

negative values of n on the right-hand side of (60) are obtained by solving

(61) and the column vectors for negative values of n are given by (63).

The result stated in the previous sentence concerning the solution

to (43) will eventually he applied to the solution to (31). The solution

to (31) is written as
n

= X" + (64)
n n n

where, for non-negative values of n, Xn and X are obtained by solvingn n

TX =B (65a)
nn n

T X = B (65b)
n ii n
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where

B W +0 Vil-0 vi ii] (66a)
n n n n n

fi$ = [-il+0 ii- i (66b)
n n n n n

where

ni l+O - i + + il+---

V V n Vn n -n

-*11-0 -41- -41-

1 n  - n (67a)

, n n -n

)i 2 - i -+ -
~in -*1

n 
1  n -n

i-1+ *4i +
V V ~zV
n n -n

-41- -*11-
n 1 n-n (67b)

_* 2 -*1 -*
v V v

n n -n

Ln J ln +I-n

The elements of the column vectors on the right-hand sides of (67) are

given by (39). In the same way that Wi, p=1, 2 ,3, in (35) was replaced
r p 4

by Wi, in order to obtain (47), the testing function W i in (39) can be

replaced by Wni,. On the right-hand sides of (67), the upper sign applies

to elements for which the testing function in (39) is t type and the lower

sign applies when the testing function is $ type.

We wish to express the currents (40)-(42) in terms of the elements
of and V for non-negative values of n. With this objective in mind

n n
and taking a cue from (64), we separate (32) into
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i I r) V (68a)n n n n n

++[ i I¢ . ](68b)

n n n n n

In view of (68), the currents (40)-(42) become

J+j=('J+ + 4-') + (J ' (69)

_-+j = (,J + J ) + (,3 - + )" ) (70)

M = M_ 0 + M$ (71)

where the currents with the superscript 0 on the right-hand sides of (69)-

(71) are due to the set of all the XO's for all values of n. Similarly,
n

the currents with the superscript p are due to the X 's. More explicitly,
n

(J + J u), u being either 9 or j, is given by (40) with I + and I . re-- -- nj an njre

placed by I .+U and I3 respectively. Here, I + u and Iu. are the thnj n' nj an iae h

elements of fI+U and Yu, respectively. Likewise, (J-u + J U) is given by
n nI- l - u  u  of -U

(41) with I - and I . replaced by the jth elements I and I " of 1-
nj ) nj nj n

and iu Finally, M is given by (42) with V replaced by the jth element
fn n jVu . of u. n

nj n

In view of (63),

1+0 Y 1-6 0 -6V (72a)
-n n n n n

X +l+ 1 _ ± + (72b)
-n n n n-  n

where the upper sign applies to the coefficients of the t type expansion

functions in (40)-(42) and the lower sign applies to the coefficients of

the 0 type expansion functions in (40)-(42). Thanks to (72) and (10), the

t and r components of the currents on the right-hand sides of (69)-(71)

become
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( + + )' cos () (73a)
nn=O

(J+ + j)* = k+ Jo+O sin (n) (73b)
n=I  

n

ke~+ jt-0

(0 + j) u k 2. cos (0) (74a)
n=0

(j + ) u = k sin (nP) (74b)
-- 1= n

Mo = k++ oo~ si~~

M u+ = Mtesin (no) (75a)
n= 1

M = kf +  I Moecos (no) (75b)
nfi0  n

+ nf1 n

0
(j+o + j¢)• = k+  I job+o cos (nob) (76b)

-- -- n=f0  n

( + ? u = kJ i at- sin (no) (77a)
-- -- n

n1

(j + j !) u I Jo- cos (no) (77b)

- -- n= 0  n

M- k-t + Y Mtqcos (no) (78a)n-- nn0O

M- u Mosin (no) (78b)

where
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F+)M +l + + +M- + +I1+o0 T.( ) M1(t)

I 'n.1 i~FF~ =M~ n,j-m+1ikp

N.-2 +.(

+IM+M n,!++-M ko (79a)

2P. (t! m N++m
T- )~+- + +n~+lk+p+ j~M +1 n,j-M++M k +

+ J
N + 1

+ + +Nn ±M-1- 
(79b)

M 1- T(t) M +M-1 T (t)
n [j' Yn ~ + X 0

Lj=' n _~ j- n,j-M-+1 +o

+ N (t
j= + n qjM- 41 k + (8a

Ii~l k). M +1 njM

j=M +M n~j+N-2M-1 k+(80b)

Mt t' 2 M++M-2(~jQ j(8a

n

+ ) 
I1

+ '( +M-1 + +
N'= +1 k 0 (81b)

~ +1 ~ -~t+M-2k ~
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JPt+ T(t M+M-1 + +
= 2j I+ + T.j(t)

kj +D ++ n,J-~M++1 l

+ N 2

j=M++M I,j+m+- m I (82a)

-1% knljp+- j= j +1 n, j -M+'4M + +k+,o+ =A++ik p.

N+ -1

+ Y+ I1 + P(
j=M +M n,j+N+-2M-1 k+p+(82b)

rM- I. t M-+M- 1
2J Lik ()J j=M - n,j-M+i k~p

+ N-2 T(

- n~j M--M(83a)

I PT-J M +M-1 P (

n n j~jln,j+M-1i ) +n + Y=MI n,j-M-+M +

N -2 1-P P(t) 8b
+ +M n,j+N kM-1

t +M+ +

/ + +
2 j=M +1 k +-4 +M + (84)
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where

= (85)n n > 0

+
In (73)-(94), k is the propagation constant in the medium characterized by

(1+  +). At present, placement of the factor k in (73)-(78) and the factor

1/k+ in (79)-(84) can only be viewed as a matter of choice. The j that

appears in the factor 21 which alternates with c in (79)-(84) is V-. The

rest of the j's in (79)-(84) are summation indices.

Because of the subsectional nature of the triangle functions, only one

of them, namely T (t+ ), contributes to (79a) when t = . where j-1 is one
possible value of any of the summition indices in (79a). Similar results

can be stated for (80a) and (81a). The pulse function P (t-) is centered
+ j

at t = t. where3

t. 1 -4 -+

t. = (t. + t+) (86)

Because of the subsectional nature of the pulse functions, only one of
+ +

them contributes to (79b) when t = t. where j is one possible value of
3

any of the summation indices in (79b). Similar results can be stated

for (80b) and (81b). Hence, the values of (79)-(81) at the peaks of the

triangle functions and at the centers of the pulse functions are given by

1I +()
n nl

k ( 2

n n,j-1
+ + j =2,3 .... M+

k

I

t+ -+ n In,-M +  + + +J (tj) = j = M +1, M +2,...M +M (87a)
n +j

kL

~n n,j+M+-M-l + + +-n +-M-j =M+M+1, M++M+2 .... N+I
k P.

1+0+
n n,N +M -H-22 N+

k+--+k ON+_]
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F2.I ++ -1 1,2,...M+
k.

2j1

2J+N+-2M-1 M+ ++
+ + j=+M, M1N

n n,j-1 23.

k P.

0

Ct. i k ~- M +1, M +2,...M-+M (88a)

1-e

k I = M+M+1, M +M+2,...N -1

- n,j+M--112...m

k j.

( t) = Ln,j-M +m j-M M+- 8
n~ k+p M +1, M+2,...M-+- 8b

k+ p- J M+M, M+ l...N-2
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- - 0 -m++

in (t.) = +n, -- +
jk+t j = M+2, M +3,...M +M-1 (89a)

n +-+

o j = M++M

M(t) = _j~ -- _ j = M++I, M++2 .. M++M+I (89b)k + +"'"

-+-+The non-zero values off J stated at t and tN+ in (87a) are due notn I -

to peaks of triangle functions but to the fact that tI and tN+ lie on

the z axis. These non-zero values were established in the paragraph

which follows the one containing (12). The starting and finishing values

of zero were included in (89a) to emphasize the fact that Mt goes to zero
nat the edges of the aperture.

The values of (82)-(84) at the peaks of the triangle functions and

at the centers ot the pulse functions are not written here. It suffices

to say that these values are given by the right-hand sides of (87)-(89)

with the factors n and 2j interchangled and with the superscript t, replaced

by 4

In summary, the electric and magnetic currents are given by (69)-(71)

and (73)-(84) of which (71))-(81) specialize to (87)-(89). According to

(68), the I's and V's in (7q)-(84) are elements of X and X . Now, N and• n n n1

are obtained by solving (65) for non-negative values of n. The momentn
matrices T in (65) are given by (33)-(36). However, (35) was reduced ton

(47) and (36) was reduced to the combination of (50) and (56). The exci-

tation vectors i3 and 131 in (65) are given by (66), (67), and (39) orn n1U

rather (39) with W , p = 1,2,3, replaced by W rr
i . -n
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V. PLANE WAVE INCIDENCE

In this section, the method of moments solution summarized in

the last paragraph of Section IV is specialized to the case in which
i+ i+ 1- i-

. H ) is an obliquely incident plane wave and E = H = 0. If

the excitation (E i + , H i + ) is rotated in 4 by an angle $0, then it is

evident from rotational symmetry that the response will rotate by the

same angle 'o. Hence, we may, without loss of generality, assume that

the propagation vector of the incident plane wave lies in the xz plane.

Any plane wave can be written as the sum of a 0-polarized plane wave and

a '-polarized plane wave. Thus, it suffices to solve the electromagnetic

problem first for a ()-polarized incident plane wave and then for a }-

polarized incident plane wave.

For the 0-polarized incident plane wave, we choose

(.i+, i+ 0 , 0
(E i + , i + ) = (E , H ) (90a)

where
tt + + rE = u k l e (91b)

t + - jkt r

k- t( k+e o (90c)

T~e "-polarized incident plane wave is defined by

(E., Fli ) = (.', H) (91a)
whe re

= u,k r/ e(9 )

H5~ ut+ e ikt r
H= k (91 i)

In (90) and (91), r is thle rad ius vector from the orig-in, and k is the
- -t

propagation vector given by

k = - k(u sin "t+ Uz (0s at ) (92)

t tAlso, u, and ,,.. are unit vectors given by
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t
= u x Cos t -U sin t (93a)

t
u, 4 I (93b)

-y
In (92) and (93), u x, u , and u are unit vectors in the x,y, and z

-. y -z

directions, respectively. The "t" in (92) and (93) stands for transmitter.

Presumably, each of the incident waves (90) and (91) is produced by a

distant transmitter. According to (92), the transmitter bearing is given

bv (.,,) = (. t0 ) where c is the angle that the radius vector from the
t t

origin makes with the positive z axis. When (1,) = (9 0), u and u
t ' •

coincide with the unit vectors in the 0 and directions, respectively.

The excitation vectors B' and 3 of (66) are now obtained for then n+n np+ r+
-polarized wave (90). Replacement of W ., p = 1,2,3, by W ., in (39)n i+ + i 1 . -

and substitution of (90) and (0,0) for (E , H + ) and (E -, H - ) in

(39) yield

il+ r+ 1 EVn = , - E (94a)ni = ni" ' +

ViI- = 0 (94b)
ni

i r+ 1 0
Vni W n +EO> (94c)

Ti

[i. = <Wr .,,HU (94d)

r+

The values of r and i' in (94a) depend on W ., the values of r and i' in
2+ -ni 3+(94c) depend on W ., and the values of r and V' in (94d) depend on W.

di + m
It is evident from (90c) and (91b) that H = - 1/11 so that (94) becomes

Vil+ = 1Wr+  ,- E0> (95a)ni ni' +

V il- = 0 (95b)
ni

Vi = <Wr+ E E0> (95c)

ni ni' ' +
ml.l

I -< Ir+ 1 Ec> (95d)
n. ni' ' +
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Now, (95) reduces to

il+ rO
Vni =V ni' (96a)

Vii- = 0 (96b)
ni

Vi Vr (96c)

nIi=. - Vni(96d)
ni ni-

where the V's on the right-hand sides of (96) are given by [12, Eqs. (113),

(114), (116), and (117)] with i replaced by i', k replaced by k+, and the

quantities in the integrands made appropriate to the generating curve of

(S ++A). The reader should not be misled into believing that the right-

hand sides of (96a) and (96c) are equal to each other. Because r and i'

originated in (94), their values in (96c) are not necessarily the same as

those in (96a).

With regard to the right-hand sides of (96), it is evident fromtO V O
[121 that V., and n are even in n and that Vni and V, are odd in

n ni' ni Vnin. Hence, substitution of (96) into (67) with due regard to (66) gives

Bi = [Vil+ 0 Vi i] (97a)
n n n n

Be = 0 (97b)

n

Of course, the elements of the row vectors on the right-hand side of

(97a) are given by (96).

The excitation vectors B and Bn of (66) are now obtained for the
n nP+ 3,2, .r+

p-polarized wave (91). Replacement of ni, p= 1,2,, y W_, in (39),

substitution of (91) and (0, 0) for (E , Hi) and (Ei, H in (39),

and use of the relationship He = EO/ri+ yield

il+ r+ 1 E
V ni= ,W-i+E > (98a)ni <ni' +

n
vil-
ni = 0 (98b,)

Vi r+ 1 Er>
Vii <Wn - > (98c)

n ni +

ii  <Wr+ E0> (98d)
ni ni +
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Now, (98) reduces to

vil+ rt (99a)
ni ni'

vi!- = 0 (99b)
ni

V ri  = V4 (99c)
ni ni'

ii = VrO (99d)
ni ni'

where the V's on the right-hand sides of (99) are given by [12, Eqs. (113),

(114), (116), and (117)1 with i replaced by i' and k replaced by k Since

V ni and V, are even in n and iand Vni , are odd in n, substitution

of (99) into (67) with due regard to (66) gives

B = 0 (100a)
n

11 = [V 0 V I ]  
(lOOb)

n n n n

where the elements of the row vectors on the right-hand side of (100b)

are given by (99). The superscripts , and that were first introduced

in (64) and (65) had no mnemonic meaning then, but seem to denote the e
and $ polarized incident plane waves now in (97) and (100).

To avoid confusion between the right-hand sides of (97a) and (lOOb)

and to achieve harmony with (66), we replace (97a) by

B = V 0 1 (101)

n n n n

and (1OOb) by

= 0 \T I 1 (102)
n n n n

According to (96). the ith elements of the row vectors in (101) are

given by
i1+' '  r) r+ 1+
ni ni W nin V n (103a)

' ,r r+ 1+
V., (103b)
ni ni' ni. -11

I r¢ r+ 3+
Ini =-V .Wni' , ni (103c)
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According to (99), the ith elements of the row vectors in (102) are

given by

vi+ r Wr+ = 1+ (104a)
ni ni' Wni = i

= V .r, I -r = W2 + (104b)ni nl -n1 --n

- rO r+ = W 3+ (104c)
1 V. W 10c

I Vni tL -ni

The V's on the right-hand sides of (103) and (104) are given by 112, Eqs.

(113), (114), (116), and (117)] modified as indicated below (96). The

auxiliary equations involving the W's in (103) and (104) determine r and

i'. For instance, the values of r and i' in (103a) are such that
r+ 1+

-ni W ui

It is now evident that the electric and magnetic currents due to the

"-polarized incident plane wave (90) are given by (73)-(75) and (79)-(81)

where the I's and V's in (79)-(81) are the elements (68a) of R0 obtained by
n

solving (65a) for non-negative values of n with B given by (101). Similarly,n
the currents due to the $-polarized wave (91) are given by (76)-(78) and

(82)-(84) where the I's and V's in (82)-(84) are the elements (68b) of Xi
n

obtained by solving (65b) with Bl given by (102). Because the testing

functions Wr+., and normalized fields E /n+ and E M + all have the dimension

of (1/distance), the elements of the excitation vectors B of (101) and
n n

of (102) are dimensionless. Since the elements of the moment matrix T are
n

dimensionless, the elements of X0 and X¢ obtained by solving (65) are alson n
dimensionless. As a result, the Fourier coefficients (79)-(84) of the cur-

rents are dimensionless. This is not surprising because, due to the facts

that an electric current has the same dimension as its magnetic field and

that a magnetic current has the same dimension as its electric field, the

electric currents (73)-(74) and (76)-(77) must have the same dimension as

(90c) and (91c) and the magnetic currents (75) and (78) must have the same

dimension as (90b) and (91b).
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VI. NUMERICAL RESULTS

A computer program was written to calculate the Fourier coef-

ficients (87)-(89) of the electric and magnetic currents due to the

0-polarized wave (90), which is generally obliquely incident. This

program will be described and listed along with sample input and output

data in a forthcoming report. The $-polarized wave (91) was avoided for

fear of making the program unwieldy. According to the exposition in

Sections IV and V, the Fourier coefficients of the currents due to the

C-polarized wave can easily be obtained by making two minor changes in

the computational procedure for the 6-polarized wave. These changes are

replacement of (101) by (102) and interchange of the factors C and 2jn

in (79)-(81) and (87)-(89).

In this section, the magnitudes of the Fourier coefficients

(87)-(89) of the electric and magnetic currents due to an axially inci-

dent plane wave traveling in the minus z direction are plotted for four

different objects of revolution. Specifically, the incident wave is

given by (90) with 0 = 0. At 6 = 0, the excitation vector (101), beingt t

obtained from [12, Eqs. (113), (114), (116), and (117)], is zero for n 0 ±1.

Hence, the only non-zero Fourier coefficients in (87)-(89) are those fc)r

which n=l. These Fourier coefficients were calculated by using the com-

puter program introduced in the previous paragraph. It is evident from

(73)-(75) and (90) that expressions (87) and (88) are ratios of the elec-

tric currents to the incident magnetic field and that expressions (89)

are ratios of the magnetic currents to the incident electric field.

In Figs. 7-9, the magnitudes of the Fourier coefficients (87)-(89)

of the currents on the object of Fig. 6 are plotted by means of symbols.

The key for the symbols Is given by

o l Jl (tj)I on conducting surfaces (lOSa)

O li 0 (t ) I on conducting surfaces (105b)

_t+0(N) + in the aperture (105)

+ li +O (t) in the aperture (105d)
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A 0, 
0
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a/l2 | - 1- -- Aperture
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Fig. 6. Perfectly conducting arrow with thick washer dielectric region.
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11.221

51I +

I t

2+

0!-- -1 E t--

Fig. 7. E-field solution for electric current on conducting surfaces of
Fig. 6. a - 0.2X, e r , - i.

I.r
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3+ / .I ,

-, I
I ' 2i

11.9 9 5

A B C D E F C H F,H FtLi

Fig. 8 C Currents on object of Fig. 6. Aperture formulation, a=0.2, E =1.
r

4 - ' - , I ' I I I , I , ' , , - -i

3-- 2!?

1 4-

A B C D ?.  F G C H F,H F

t ---

Fig. 9. Currents on object of Fig. 6. Aperture formulation, a=0.2 ' , r 4.
r
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tO ( eiM1 (t.)I  in the aperture (105e)

IMI (t+)I in the aperture (105f)
j

in (105a) and (105b), the plus sign applies on and the minus sign

applies on S. The surfaces S+ and S- merge on the infinitely thin con-

ducting flange from C to H in Fig. 6. There, (105a) and (105b) are

replaced by

t+o( +) _ J- (t )Ion the thin flange (106a)

+(t+) - J - O (t m )l on the thin flange (106b)

where " is such that both t. and t9 are located at the same point on the

flange and m is such that both t. and t- are located at the same point on the
j m

flange. The expressions whose magnitudes are being taken in (106) are the

Fourier coefficients of the electric current induced on the flange. In

general, the electric current induced on an infinitely thin perfectly con-

ducting surface is the sum of the exterior and interior currents. However,

because -J is used in Fig. 3, the electric current induced on the flange

in Fig. 6 is J +-J-. Thus, the difference rather than the sum of coef-

ficients is required in (106). All of expressions (105) and (106) are

plotted in each of Figs. 8 and 9. However, only the expressions on the

conducting surfaces, namely (105a), (105b), (106a), and (106b) are

plotted in Fig. 7. Actually, the exrressions plotted in Fig. 7 are not

(105a), (105b), (106a), and (106b) themselves but expressions comparable

to them.

For simplicity, the vertical axes in Figs. 7-9 are labeled !.

The horizontal axes are labeled t rather than t+ or t. Here, t represents

arc length between the points A,B,C,... designated in Fig. 6. The t com-

ponents of (the Fourier coefficients of) the currents, namely (105a), (105c),

(lOSe), and (106a), are plotted at the tick marks in Fig. 6. These tick

marks represent the data points (11). The components of the currents,

namely (105b), (105d), (105f), and (106b), are plotted at points midway

between the tick marks in Fig. 6. In Figs. 7-9, the symbols used to
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plot (105) and (106) are connected by straight line segments to improve

readability. To avoid congestion, the aperture region from H to F in

Fig. 6 is depicted twice in each of Figs. 8 and 9, once for plotting the

electric currents (105c) and (105d) and once for plotting the magnetic

currents (l05e) and (105f). The following argument reveals that the t

axes in Figs. 7-9 are not always drawn to scale. Not all data points

in Fig. 6 are equally spaced. For instance, the data points from F to

G are not quite as dense as those from A to B. More obviously, the

data points in the aperture are twice as dense as those from A to B.

However, all data points are equally spaced along the t axes in Figs. 7-9.

Incidentally, the proper density of data points, or rather triangle

functions, in the aperture is discussed in [8].

The currents in Fig. 7 were obtained by means of the E-field solu-

tion, the currents in Figs. 8 and 9 by means of the aperture formulation,

and, if the reader will please glimpse forward, the currents in Fig. 15 by

means of the H-field solution. The E-field solution is that of [12] with

n 2
t

* 20 (107)
n=

nT  2

where nt , n,, and nT appear in the Gaussian quadrature formulas [12,

Eqs. (62), (64), and (132)], respectively. The H-field solution is that

of [14] with the values of nt, n,, and T therein given by (107). Spec-

fically, nt, n,, and nT appear in [14, Eqs. (35), (36), and (79)]. The

roles played by nt,n i, and nT in [14] are similar to the roles played by

nt , n,, and nT in [12]. The aperture formulation refers to the solution

(87)-(89) developed in the present report. In view of (68a), the I's and

V's in (87)-(89) are given by the solution X to (65a). In Section IV,

the elements of the moment matrix T1 were expressed in terms of the ele-

ments of matrices similar to the moment matrices used in [12] and [141.

In Section V, the elements of B in (65a) were expressed in terms of the

elements of the plane wave excitation vectors used in [12]. The currents
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attributed to the aperture formulation were obtained by calculating

Tand with nt n., and nT given by (107).

The E-field solution for the electric current induced on the

conducting surfaces of the object in Fig. 6 was constructed by using

two generating curves. The first one is ABCDEFG and the second one

extends from the tick mark directly below C to the point H. Since the

computer program in [121 is designed to handle only one generating curve,

the two (short) curves were connected to form one long curve, and then all

matrix elements associated with the line connecting the two short curves

were deleted. The matrix elements associated with the first pulse func-

tion on the second short curve were also deleted because that pulse func-

tion is a duplicate of one of the pulse functions on the first short curve.

With this arrangement, two independent triangle functions are centered at

C. Because each of these triangle functions satisfies Kirchhoff's current

law at C, the resulting E-field solution for the t component of the induced

electric current satisfies Kirchhoff's current law at C. The t component

of the induced electric current obtained by means of the aperture formu-

lation also satisfies Kirchhoff's'5urrent law at C. However, satisfaction

of Kfrchhoff's current law by the t component of the induced electric

current at C is masked in Figs. 7-9 because magnitudes of currents rather

than real and imaginary parts of currents are plotted there.

-he t component of the induced electric current is zero at H in

Fig. 7 because no triangle function is centered there. The t component

(106a) of the induced electric current is zero at H in Figs. 8 and 9 be-

cause the two J's in (106a) are equal to each other at H. These two J's

have to be equal to each other at H because they are both equal to the

aperture current there.

It is obvious that the E-field solution for the t component of

the induced electric current has to be continuous at F in Fig. 6. The

following reasoning shows that the t component of the induced electric

current obtained by using the aperture formulation is also continuous at F.

Because the t direction is the same as the t +direction on the G side of F,

the t component of the induced electric current is J t+ (t+) there. Now,
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t and t are oppositely directed on the E side of F and there is a

compensating minus sign on J in Fig. 3 so that the t component of the

induced electric current is t-0(t-) on the E side of F. However,
t+- + 0t- -

i (t+) = J (t-) at F because they are both equal to the aperture
1 1

current there. Hence, the t component of the induced electric current

obtained by using the aperture formulation is continuous at F.

The notation previously developed with specific reference to

Figs. 6-9 and 15 applies not only to these figures but also to Figs.

10-14 and 16-22. The object in Fig. 10 differs from the exemplary

object in Fig. I in that neither the exterior surface S+ nor the in-

terior surface S has a part above the aperture in Fig. 10. Nevertheless,

the computer program mentioned in the first paragraph of this section is

still applicable. Figure 11 shows currents on the spherical shell and

associated aperture region of Fig. 10 when r: = I. The currents plottedr

from A to 11 in Fig. II are the electric currents (106) induced on the

conduct ing shelI.

The following reasoning shows that the E-field solution for the

electric current induced on the conducting shell in Fig. 10 is exactly

the same as the solution obtained by means of the aperture formulation

when r = 1. When partitioned, (31) consists of four matrix equations.

The first two of these equations are

I1+ fl+ + Z12+ - _ y13+ -=il+ (lOSa)z r +z r (108a
n n n n n n n

11- i1- + 9 Z12- i Y _ y13- y = il- (108b)
r n n r n n n n n

Since the conducting surface in Fig. 10 is infinitely thin, the surfaces
+

S and S exemplified in Fig. I are identical. Furthermore, = I andr

= 1 so that the superscripts + and - attached to the Z's and Y's in

(108) lose their distinction. Hence, the difference between (108a) and

(108b) reduces to

ll+1 l+ - 1+ _1- (109)
7 [T (109) -

n n n n n

Because the elements of [TI - i l- can be interpreted as the unknown
n n
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Fig. 11. Currents on object of Fig. 10. Aperture formulation,
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7 " ------- - ----- -1, - -+---_ -- + _4 
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(a)
(b)Fig. 12. Currents on object of Fig. 10. Aperture formulation, k+a 12.5,Fr = 2. (a) 10 Intervals from A to B as in Fig. 0. (b) 15 in-tervals from A to B.
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coefficients appearing in the expansion of the electric current induced

on the shell, (109) is precisely the matrix equation for the E-field solu-

tion. As a result, the E-field solution for the electric current in-

duced on the shell in Fig. 10 is exactly the same as the electric current

plotted from A to B in Fig. 11.

The magnetic currents (lO5e) and (105f) plotted from B to C in

Fig. 11 are comparable, respectively, to the functions jg(r )J and If(O),

appearing in [15, Fig. 7]. The horizontal axes in [15, Fig. 7] and Fig. 11

run in opposite directions. The statement that ka =2.75 in the caption

of [15, Fig. 71 is incorrect because ka is really 2.5 there. The currents

shown in Fig. 12a were calculated by using the data points designated in

Fig. 10. However, the currents shown in Fig. 12b were calculated with

the curve from A to B in Fig. 10 divided into not 10 but 15 equal intervals.

For Fig. 12b, the data points in the aperture were those designated in

Fig. 10.

The object in Fig. 13 was obtained by taking a perfectly conducting

solid sphere of radius a centered at the origin and replacing the conducting

material in the region Iz! < a sin 150 by dielectric material characterized

by 0F- I c c). The F-field and H-field solutions for the electric current

induced on the conducting surfaces of Fig. 13 are shown in Figs. 14 and 15,

respectively. These solutions were obtained by connecting the generating

curves ABC and DEF in Fig. 13 to obtain the single curve ABCDEF and then

deleting the matrix elements associated with the connecting line CD. Di-

visions by zero were avoided by arbitrarily setting k+Pequal to 1 midway

between C and D. Here, p is the distance from the z axis.

The currents shown in Figs. 16 and 17 are on the object of Fig.

13 and were obtained from the aperture formulation. The object in Fig.

13 differs from the exemplary object in Fig. 1 in that the parts of S

above and below the aperture are disjoint in Fig. 13. However, the com-

puter program mention-d in the first paragraph of this section allows for

this. The induced electric currents from A to C and from D to F are

slightly different from each other in Figs. 14-16. The induced electric

current on the conducting surfaces of Fig. 13 obtained from the aperture

formulation when c -1 differs from the E-field solution for the induced
r
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D
aF

0° . oro _ Aperture

B

A

Fig. 13. Two perfectly conducting portions of a sphere separated by a
dieleCtric region.

ff
A B C D E F

Fig. 14. E-field solution for electric current on conducting surfaces

of Fig. 13. k+a = 2.5, ,r = 1.
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Fig. 15. H-field solution for electric current on conducting surfaces
of Fig. 13. k+a = 2.5, c = 1.r

J t

I r

A B C D E F B E,B E

Fig. 16. Currents on object of Fig. 13. Aperture formulation,

k+a - 2.5, 1.
r
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1t

A B C D E F B E,B E

Fig. 17. Currents on object of Fig. 13. Aperture formulation,

k+a = 2.5, cr - 2.
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electric current because of the following reasoning. Of the triangle

functions used in the aperture formulation, those centered at B and E

are essential to the induced electric current. However, these triangle

functions extend into the aperture. On the other hand, all of the triangle

functions used in the E-field solution are confined to the conducting sur-

faces. In this respect, the aperture tormulation differs from the E-field

solution.

Figures 19-22 show currents on the object of Fig. 18. On the object

of Fig. 18, EFB is the generating curve of the aperture. The object in

Fig. 18 differs from the exemplary object in Fig. I in that neither the ex-

ternal surface S+ nor the internal surface S_ has a part below the aperture

in Fig. 18. However, the computer program mentioned in the first paragraph

of this section allows for this. As seen from Figs. 19-21, the E-field

solution, the H-field solution, and the aperture formulation each give

slightly different results for the electric current induced on ABCD in

Fig. 18. The E-field solution and the aperture formulation give different

results for this current because in the aperture formulation the conductor

is coupled to the aperture at point B in Fig. 18.
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2-

D

Fig. 19. E-field solution for electric current on conducting

surface of Fig. 18. a = O.I, E = I.

2

0 tl

A B C D

Fig. 20. H-field solution for electric current on conducting surface

of Fig. 18. a = 0.1), c = 1.Lr
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Fig. 21. Currents on object of Fig. 18. Aperture formulation,
a = O.IX, c = 1.r

3j- ! I I ! ! o I I I I I
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, J ', v
A B C D,E F B,E F B

Fig. 22. Currents on object of Fig. 18. Aperture formulation,

a - 0.X, E r=a 4.
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